20080511~
13と7と11の倍数の論理積は13と7と11の積の倍数である。
和ァ・・・
特殊直交かつ実対称な行列の固有値
アライ「フェネック!今日はこれの固有値を計算してみるのだ!」 フェネック「これはー?」 アライ「”りょうりしきがく”?に出てくる、5状態系の角運動量の固有状態なのだ!さっそくscilabにつっこんでっと・・・」 フェネック「アライさーん、急いじゃだめだってばー。この行列はなんだったかな?」 アライ「だから、固有状態なのだ!」 フェネック「固有状態ってことは、規格化されてるはずじゃないかー」 アライ「ってことは、これは直交行列なのか!?Aの転置A'からAを引いたA'-Aは・・・ふぇええええ!?ゼロ行列になったのだ!」 フェネック「アライさーん、またやってしまったねえ。それは対称行列の定義だよー」 アライ「そうなのだ!直交行列の性質は、逆行列を引いたこっちだったのだ!A'-int(A)」 フェネック「どうだったー?」 アライ「すごいのだ!こっちもゼロ行列になったのだ!!ってことは、直交行列かつ対称行列ということなのだ!」 フェネック「対称行列と直交行列は、数でいうところのどういう雰囲気だったかな?」 アライ「えっと・・・対称行列は実数で、直交行列は・・・オイラーの公式なのだ!」 フェネック「そうそう、実際、対称行列の固有値が全部実数で、直交行列の固有値は全員、複素平面の単位円周上にいるよねー。ってことはー?」 アライ「実対称行列か直交行列な行列の固有値は・・・実数かつ”絶対値が1”だから・・・、プラス1とマイナス1しかありえないのだ!やっぱりフェネックはすごいのだ!」 フェネック「アライさーん、この行列の行列式(固有値の積)を計算してみてよー」 アライ「任せるのだ!この文字をscilabにつけてっとdet(A) 1になったのだ!abs(det(A))じゃなくても1になったのだ!すごいのだ!実は特殊直交行列だったのか!?」 フェネック「そういうことになるねー。じゃあついでに、トレース(固有値の和)も計算してみてくれるー?」 アライ「簡単なのだ!対角要素の和だから、これも1なのだ!すごいのだ!いちざんまいなのだ!」 フェネック「ここから言えることは何かあるかな?」 ???「待って!ここから導き出される結論は、全部お見通しよ!」 アライ「キリンさんなのだ!こんにちはなのだ。」 フェネック「こんにちはー」 キリン「こんにちはー。行列Aの固有値探しをしているのね。以上のことをまとめると ・Aは5次行列だから、固有値は5つある ・Aは対称行列だから、固有値は実数 ・Aは直交行列でもあるから、固有値はプラス1かマイナス1で、5つ全部掛け算すると1になる ・Aのトレースは1だから、固有値を全部足すと1になる ・Aの行列式は1(特殊直交行列) 掛け算してプラス1になるということは、-1の固有値は偶数個 可能性としては1,-1,-1,-1,-1か1,1,1,1,1か、1,1,1,-1,-1がありえるけど 前者2つはトレース1にならないから却下。 つまり、固有値は、1,1,1,-1,-1ね!!!」 アライ「おいしいところをキリンに全部持っていかれたのだ~」 フェネック「アライさんなら手計算でいいとこ魅せられるよ~」 アライ「おおー!その手があったのだ!任せるのだ! まず、Aの中身に4で割ってるのがあるから、Aを4倍して、λを固有値として、4λ倍した単位行列で引いて、行列式を求めるのだ。 2列目に2列目-4列目を代入して それから、2行目に2行目-4行目を代入したら、掃き出し法が楽になるのだ 4次の行列に次数が1つ減るから、 1列目に1列目+4列目を代入して 今度は、3列目に3列目から、(-4λ)/(-4)倍した4列目を引くのだ また掃き出し法がしやすくなったから、次数を1つ減らして3次の行列になったのだ。 ここで、同類項でくくって行列式の外に放り出して、計算をしやすくするのだ。 それから、3行目に、3行目-1行目を代入して、掃き出し法を行うのだ。 2次の行列式まできたら、もう迷わないのだ!無敵の布陣なのだ!ちゃんと3重解と重解を出してやったのだ!」 フェネック「おおー!λの係数、マイナス4の5乗-1024がちゃんと出てるよ~すごいよアライさん!」 アライ「アライさんは、不滅なのだーーーー!そしてキリンさんも、すごい推理力なのだ!」 キリン「えっへん!アライさんも、器用だねー」 アライ「ヴェーハハハハ!!!これからはシン・アライ神と呼ぶがいいのだ!」 フェネック「アライさんがパークの危機になっちゃうのかー」 PR
特殊ユニタリかつエルミートな行列の固有値
アライ「フェネック!今日はこれの固有値を計算してみるのだ!」 フェネック「これはー?」 アライ「”りょうしりきがく”?に出てくる、5状態系の角運動量の固有状態なのだ!さっそくscilabにつっこんでっと・・・」 フェネック「アライさーん、急いじゃだめだってばー。この行列はなんだったかな?」 アライ「だから、固有状態なのだ!」 フェネック「固有状態ってことは、規格化されてるはずじゃないかー」 アライ「ってことは、これはユニタリなのか!?Aエルミート共役A'からAを引いたA'-Aは・・・ふぇええええ!?ゼロ行列になったのだ!」 フェネック「アライさーん、またやってしまったねえ。それはエルミート行列の定義だよー」 アライ「そうなのだ!ユニタリ行列の性質は、逆行列を引いたこっちだったのだ!A'-int(A)」 フェネック「どうだったー?」 アライ「すごいのだ!こっちもゼロ行列になったのだ!!ってことは、ユニタリかつエルミートということなのだ!」 フェネック「エルミートとユニタリは、数でいうところのどういう雰囲気だったかな?」 アライ「えっと・・・エルミートは実数で、ユニタリは・・・オイラーの公式なのだ!」 フェネック「そうそう、実際、エルミート行列の固有値が全部実数で、ユニタリ行列の固有値は全員、複素平面の単位円周上にいるよねー。ってことはー?」 アライ「エルミートかつユニタリな行列の固有値は・・・実数かつ”絶対値が1”だから・・・、プラス1とマイナス1しかありえないのだ!やっぱりフェネックはすごいのだ!」 フェネック「アライさーん、この行列の行列式(固有値の積)を計算してみてよー」 アライ「任せるのだ!この文字をscilabにつけてっとdet(A) 1になったのだ!abs(det(A))じゃなくても1になったのだ!すごいのだ!実は特殊ユニタリだったのか!?」 フェネック「そういうことになるねー。じゃあついでに、トレース(固有値の和)も計算してみてくれるー?」 アライ「簡単なのだ!対角要素の和だから、これも1なのだ!すごいのだ!いちざんまいなのだ!」 フェネック「ここから言えることは何かあるかな?」 ???「待って!ここから導き出される結論は、全部お見通しよ!」 アライ「キリンさんなのだ!こんにちはなのだ。」 フェネック「こんにちはー」 キリン「こんにちはー。行列Aの固有値探しをしているのね。以上のことをまとめると ・Aは5次行列だから、固有値は5つある ・Aはエルミートだから、固有値は実数 ・Aはユニタリでもあるから、固有値はプラス1かマイナス1で、5つ全部掛け算すると1になる ・Aのトレースは1だから、固有値を全部足すと1になる ・Aの行列式は1(特殊ユニタリ行列) 掛け算してプラス1になるということは、-1の固有値は偶数個 可能性としては1,-1,-1,-1,-1か1,1,1,1,1か、1,1,1,-1,-1がありえるけど 前者2つはトレース1にならないから却下。 つまり、固有値は、1,1,1,-1,-1ね!!!」 アライ「おいしいところをキリンに全部持っていかれたのだ~」 フェネック「アライさんなら手計算でいいとこ魅せられるよ~」 アライ「おおー!その手があったのだ!任せるのだ! まず、Aの中身に4で割ってるのがあるから、Aを4倍して、λを固有値として、4λ倍した単位行列で引いて、行列式を求めるのだ。 2列目に2列目+4列目を代入して それから、2行目に2行目-4行目を代入したら、掃き出し法が楽になるのだ 4次の行列に次数が1つ減るから、 1列目に1列目+4列目を代入して 今度は、3列目に3列目に、(4λ)/(-i4)倍した4列目を足すのだ また掃き出し法がしやすくなったから、次数を1つ減らして3次の行列になったのだ。 ここで、同類項でくくって行列式の外に放り出して、計算をしやすくするのだ。 それから、3行目に、3行目-1行目を代入して、掃き出し法を行うのだ。 2次の行列式まできたら、もう迷わないのだ!無敵の布陣なのだ!ちゃんと3重解と重解を出してやったのだ!」 フェネック「おおー!λの係数、マイナス4の5乗-1024がちゃんと出てるよ~すごいよアライさん!」 アライ「アライさんは、不滅なのだーーーー!そしてキリンさんも、すごい推理力なのだ!」 キリン「えっへん!アライさんも、器用だねー」
男性・女性であることを肯定もできるし、否定もできる。
うーん、どっちなんだろう? でも、確かに言えることは 毛でフワフワに囲まれた、胸の位置にあるやわらかおっぱいとか最高すぎるだろ!!!! ってことです。 なぜにそこの可能性を消してしまったのか・・・うーん解せない。解せないぞオーゼン! 服を着る習慣がない理由がんなあー、わからんのよんなあー 実は元々確かに女性だったんだけど、乳首あるいは乳房を隠す習慣が根付く前にケモノになってしまった、とか? 毛が生えていれば隠す必要性を感じなくて、本人も「隠すための布」の存在意義を見失ったとか 羞恥心はあるし、でもまともな料理を食ったことがないっていう意味ではありえるかもしれない ところで、オーゼンの声が大原さやかさんなんだが リコという金髪がいて、 その母親(のようなもの)がオーゼン・・・こんなきんモザは嫌だ!一本できそうじゃね? メイド服着てるやつもいるし、問題なんか何もないんだよなぁ っていうかなんだろう、フェアリーテイルのエルザ・スカーレット成分を足してもいいかもしれない。巨乳で、はたから見れば露出狂の魔法の使い手であり、時々天然なんだあいつは。 それでいてARIAのアリシアなんだぞ!? うわぁ・・・このキャラ癖しかねえ!wwww
けものフレンズ×量子力学SS
かばん「サーバルちゃん!5次行列の特殊ユニタリの作り方、別解を見つけたよ!」 サーバル「えっと・・・」 かばん「量子力学における、5状態系の角運動量演算子の代数を思い出してみて!?」 サーバル「・・・わかんないや!」 かばん「あ、そっか・・・このサーバルちゃんはダイバージェンスが1頭身低い世界線のサーバルちゃんだった・・・。じゃあこれの行列式わかる!?」 サーバル「わかるよ!今計算してみるねー!うーみゃみゃみゃみゃ!みゃぁー!」 p1=[1/4;%i/2;-sqrt(6)/4;-%i/2;1/4] p2=[1/2;%i/2;0;%i/2;-1/2] p3=[sqrt(6)/4;0;1/2;0;sqrt(6)/4] p4=[1/2;-%i/2;0;-%i/2;-1/2] p5=[1/4;-%i/2;-sqrt(6)/4;%i/2;1/4] P=[p1,p2,p3,p4,p5] det(P) scilab サーバル「マイナス1だよ」 かばん「じゃあ、2列目全体をiで割って、3行目全体の符号を反転して、4行目全体にiをかけたら、行列式はどうなるかな!?」 サーバル「うーみゃみゃみゃみゃ!みゃぁー!」 p2=p2/%i p3=-p3 p4=p4*%i scilab サーバル「1になったよ!かばんちゃん!」 かばん「ちゃんとユニタリになってるかもう一度確認してみてくれる!?」 サーバル「P-P' おおー!ゼロ行列だよ!すっごーい!」 かばん「おおー!・・・ん?もうサーバルちゃんのドジー^^;それはユニタリ行列じゃなくてエルミート行列の性質でしょ~」 サーバル「ごめんごめん^^;clean(inv(P)-P') ええ!?これもゼロ行列だよ!」 かばん「えええええ!?特殊ユニタリかつエルミートな5次行列なのぉー!?」 ???「これが”りょうし”のすごさなのです」 ??「なのです」 かばん「博士!それに助手!」 コノハ博士「りょうしのすごさがわかったのなら、さっさとおかわりを作るのです」 ミミ助手「とっととやるのです」 かばん「ちょっと待ってください^^;今これを作ってて」 n=now()-today() t=1000000n 角度(°)=mod(round(t,0),360) 角度(rad)=角度(°)*PI()/180 mmult(横ベクトル、回転行列) z=z+下駄 A:ズーム x=Ax/z y=Ay/z x-yの2Dグラフを表示 コノハ博士「なんですかこれは!?」 ミミ助手「ヒトの遺物、Excelなのです」 かばん「エルミートかつユニタリな行列の可視化器を作ってまして・・・ 5次行列なので、要素が25個あって、固有ベクトルなのを5本の串1本1本に刺さったサイコロステーキで表現してみました。 バツ印のついているほうが向きで、絶対値は、側面の面積で表現しています。 固有ベクトルなので、それぞれの列を串で回転させることができます。 ただし、エルミート行列の固有状態なので、90度ごとにとびとびになってます。 規格化された固有ベクトルなので、サイコロステーキ串1本当たりの1側面の面積の和は5本とも1です」 ミミ助手「じゅるり・・・」 コノハ博士「これが・・・りょうしですか!!!」 サーバル「私はカット役だよ!」 ミミ助手「この計算をサーバルがやったのですか!?」 サーバル「ふっふーん!」 コノハ博士「ヒトの遺物scilabを用いているとはいえ、これだけのルールを扱うとは、サーバル、なかなかやりますね」 ミミ助手「我々と同じくらい賢い素質があるのです」 サーバル「やったー!」 かばん「やったねサーバルちゃん!」 コノハ博士「それにしてもかばんはアホなのです」 かばん「ええ!?」 ミミ助手「なぜExcelで、しかもマクロなしでこれを作ろうと思ったのですか!?労力の無駄遣いです」 かばん「デスヨネー^^;プログラミングがまだ怖くて・・・」 コノハ博士「かばんにも怖いものがあるのですか」 サーバル「大丈夫だよ!フレンズはお友達のためなら怖いものでも克服しちゃうんだから!ほら~」 ミミ助手「サーバル!やめるのです!図書館が!本が!我々の不動産、知的財産が!燃え尽きてしまうのです!!!」 かばん「ギンギツネさん、キタキツネさん!タライさんの出番ですよー!」 ギン「私たちも不動産なら持ってるのにねぇ?」 キタ「持ってないのはセルリアンハンターくらいだよ」
(p・∇・q)
の(p・∇が内積だったら、・q)のほうはただの、行列やベクトルのスカラー倍になってしまうし ∇・q)が内積だったら、今度は(p・のほうがただのスカラー倍になってしまう しかしなんとかこの両方を活かした内積なぶらを定義できないだろうか そこで先人の叡智(/π/2)であるブラ・ケット表記を参考にしてみる ベクトルではなく、関数の直交関係とかだったらどうなんだろうか いやあるいはいっそのことベクトルの平方根のようなものを定義して、そいつの名前はスピノルとかするのだろうか (p・がブラで ・q)がケット つまり(p・がおっぱいでありブラジャーでもあり ・q)がケツでありおパンツでもあるというわけだ。 ところがだ、困ったことにケツのほうにいいとこのおまめさんがないのである。 もしかしておっぱいにある乳首というのは外付けの器官だとでもいうのだろうか?? いやそれはおかしい。特に意味のないとされる男性の胸部にも乳首はあるではないか。 まあそれはさておきとりあえず乳首が外付けだと仮定して 乳首はどうして発生したのか。 元々、ただ単に体液を分泌する汗腺のようなものが発達したのだとすると もしかしたらあるいは、乳首という進化の袋小路に迷い込む前は きっかけとしてただの虫刺されだったという可能性があるのではないか 胸部を尻の代わりのセックスシンボルとするなら、 先祖返りして四足歩行に戻った元人類のケツにあたる部分に 何らかの体液が分泌される乳首のようなものができてもおかしくは・・・ うーんしかし近くに生殖器そのものがあるしなぁ いやちょっと待て。人類以外の哺乳類の乳首は大概尻のすぐ近くにあるではないか だあ゛ーだめだ!それならなおさら、尻に乳首が生える可能性が見いだせない!!! これがおっぱいとケツの自発的対称性の破れなのかーーーー!!!
天気はよかったのに、悔しいかな体調があまりよくなくて。
そういえば偶数次の行列の、角運動量演算子の固有値な 奇数次みたいにうまくいかないみたいだから、もしかしてその辺ボソンとフェルミオンの分け目なのかなって思って、交換関係じゃなくて反交換関係でやってみようかなとか思ったりして。 それで、パウリ行列のwikiを眺めてみたら、さすがマジックナンバー2 交換関係も反交換関係も両方ありなのかよおまえすげーな! それで少し思ったのが、 ユニタリとかエルミートの行列の次数って偶数か奇数かが割りと大事なんじゃないかなってことで ほら、2って唯一の偶数素数だし そもそも1次の行列ってスカラーじゃないすか。 その辺、なんとなく素数ですらない1と親和性高いかな~?とか。 じゃあ素数次の行列ってのも割りと重要性あるかもってことになりそうだよね あーこれはいよいよ、仮面ライダービルドが、スピン2/2のボールをばんじょうやフォーゼとキャッチボールするシチュエーションがはかどりますわ ばんじょうやフォーゼはきっと、スピン2/2のくじゅうううう偶蹄目な口蹄疫を 無理やり物理でスピン捻じ曲げて半整数のSUSY(馬)にして病気を病気じゃなくして返すタイプだからね 重力波以外では消える魔球だよ!ニュートリノ天文学もびっくりだよ!
おとといの続きです。
暴風雨がうるさくて怖いので、なるべく無心に、何も考えないで作業して暇をつぶします。 5状態系の角運動量のy成分Lyを行列表現すると こうなるので、おとといと同様に、λを固有値として |2Ly-2λE|=0となるλを計算してみましょう。 1行目をi/λ倍したものを2行目から引いて、2行目に代入します。 5次行列式が1次減って4次行列式になるので、 ふたたび 1行目をλ/(-2λ^2+2)×(i√6)倍して2行目から引き、それを2行目に代入しましょう。 そうすると行列式が3次まで減らせるので、 1行目を(-2λ^2+2)/(4λ^3-10λ)×(i√6)倍して2行目から引き、それを2行目に代入して、次数を2次にします。 最後に、 1行目を(4λ^3-10λ)/(-8λ^4+32λ^2-12)×(i2)倍して2行目から引いたものを2行目に代入し、自明なスカラーにしてしまいましょう。 おとといと同じ方程式が出てきましたね。 -32λ(λ^4-5λ^2+4)=0 これは -32λ(λ^2-1)(λ^2-4)=0 に因数分解でき、さらに -32λ(λ+1)(λ-1)(λ+2)(λ-2)=0 に因数分解できるので 固有値はλ=0,±1,±2の5つとなります。 おととい同様、エルミート行列だったので、固有値が実数でしたね。 また、-2λが5つあるので、 展開した多項式におけるλの最大次数は5で、その係数は(-2)の5乗で-32になりましたね。
まずはx成分から。
Lxは こうなので、λを固有値として 2Lx-2λEの行列式を求めてみましょう。 ここで、1行目を1/λ倍して、2行目から引いた値を、2行目に代入してみますと、1列目がほとんどゼロになるので、 5次の行列を4次の行列に縮めることができます。 4次の行列でも同様に、 ②←②-①×λ/(2-2λ^2)×√6 を行って、3次の行列に縮めることができます。 さらに、②←②-①×(2-2λ^2)/(4λ^3-10λ)×√6をして2次に ②←②-①×(4λ^3-10)/(-8λ^4+32λ^2-12)×2 をしてスカラーの方程式にしますと -32λ(λ^4-5λ^2+4)=0 という方程式になります。 これをλ^2について因数分解すると -32λ(λ^2-1)(λ^2-4)=0 になるので、さらに因数分解しますと -32λ(λ+1)(λ-1)(λ+2)(λ-2)=0 となって、固有値λ=0,±1,±2を求めることができます。
2017/10/12のコイツ
3状態系の角運動量のx軸成分の固有状態を並べたもの コイツは素直にエルミートかつユニタリっすよね。 じゃあ2017/10/11のコイツ 角運動量のy軸成分はどうでしょうか。 ユニタリですが、エルミートではありませんね。 しかし、縦に並んでいる3つの串と見なせば、この串を90度ずつ回転させる自由度はあるので 真ん中の列ベクトルをごっそり-i倍してみましょう。 そうするとまず、こうなりますよね 2行2列目を実数に保ちつつ、2行1列目に1行2列目を合わせる形で、列ベクトルの串を90度回転させました。 そうしたら、今度は2行3列目と3行2列目の帳尻を合わせるように、3列目の列ベクトルの串を90度ずつ回したいので、今回はごっそり180度回転させてしまいますと このようになって、1行3列目と、3行1列目の帳尻もちゃんと合ってることがわかり、 無事、エルミートかつユニタリとなりました。 この固有状態の行列式は-1です。 固有値の絶対値も、3つとも1です。 4と1/2と1/2などということはありません。 トレースも1であることがわかるため、固有値は1が2つカブっていて、そのほかに-1があることがわかるかと思います。 わざわざ固有方程式を出すまでもなく、因数分解した結果がわかっているということです。 (λ+1)(λ-1)(λ-1)=0 ========= 5状態系もやってみましょう。 昇降演算子はそれぞれ このような係数になっているので LxとLyはそれぞれ こうなり、 Lzは交換関係iLz=[Lx,Ly]から こうなります。 Lzはもちろん、LxとLyからも、共通の固有値±2,±1,0が導出できて 固有ベクトルはx,y方向それぞれ と となり、エルミートかつユニタリになりました。 z方向の固有状態は単位行列となり、 どうも x:実対称行列かつユニタリ y:エルミートかつユニタリ z:単位行列 となる癖があるようですね。 ユニタリであることと、行列式とトレースから、このユニタリの固有値はすぐに -1,1-1,1,1 と求めることができます。 つまり逆算すると (λ+1)(λ-1)(λ+1)(λ-1)(λ-1)=0 という5次方程式になるはずということです。 ためしに、5状態系で、固有状態の行列式がiになるような状況で固有方程式を求めてみたところ 解として-1の複素原始3乗根「ω+1」が出てくる方程式が現れたことがありました。 てっきり360°を5等分する、代数的ではない(三角関数的)な解が出てくることを期待したのですが いまいちうまくいきませんでした。 もしかしたらほかの状態だと72度の三角関数が顔を出してくれたのかもしれません。 偶数次の行列も、許されていないわけではないようなので、そのうちやってみようかと思ってます。 scilabに時々頼るのですが 瞬時に固有値が出たり、固有方程式が解析的に出せたりして、それでいて無料なので 便利ですよね。 ああそういえばCV:くじら偶蹄目で思い出したんですが 動物の蹄にスピンなんか関係しませんよねたぶん 偶数に割れてるのがボソンで、 奇数に割れてるのがフェルミオンで どちらかだけ口蹄疫に感染するとか、まさか~www 関係があるとしても、たぶん、同じ数学を使う全然別の現象 クォークのひも理論と超ひも理 あるいは 量子力学に使うパウリ行列と3DCGに使うクォータニオン ぐらい違うんじゃないかな P†=inv(P) かつ P†=P だからinv(P)=Pで 対角化がJ=PAPなのはじわじわ草生えます 追記 そういえば3状態の固有状態の行列式ですが、-1になってましたね。 この3列とも符号を反転させれば、めでたく行列式をプラスにすることができますね。 ということはええと、特殊ユニタリ・・・のような気がしますね。まじですか 生成子と結び付けることが可能と・・・ |
カレンダー
カテゴリー
最新CM
[12/30 buy steroids credit card]
[09/26 Rositawok]
[03/24 hydraTep]
[03/18 Thomaniveigo]
[03/17 Robertaverm]
最新記事
(01/01)
(01/03)
(09/23)
(09/23)
(02/11)
(05/30)
(05/28)
(05/28)
(05/27)
(08/04)
(10/24)
(06/08)
(05/22)
(01/13)
(11/04)
最新TB
プロフィール
HN:
量子きのこ
年齢:
43
HP:
性別:
男性
誕生日:
1981/04/04
職業:
WinDOS.N臣T
趣味:
妄想・計算・測定・アニメ
自己紹介:
日記タイトルの頭についてるアルファベットは日記の番号です
26進数を右から読みます 例:H→7番目、XP→15(P)×26+23(X)=413番目。 A=0とする仕様につき一番右の桁はAにできませんのでご了承くださいズコー
ブログ内検索
アーカイブ
最古記事
(05/11)
(05/11)
(05/13)
(05/13)
(05/13)
(05/13)
(05/13)
(05/13)
(05/14)
(05/14)
(05/14)
(05/14)
(05/16)
(05/16)
(05/16)
アクセス解析
|