20080511~
13と7と11の倍数の論理積は13と7と11の積の倍数である。
和ァ・・・
昨日、トンネル効果の壁の幅や高さについていろんな極限を取ったのはですね
久々の計算だったので、検算のかたわら、というのがあったんですよ。 壁がない状態にして自由粒子状態にしたり 右側しかない井戸型ポテンシャルみたいにしたりして 定性的に納得できるところまで落とし込んでみたんです。 もちろん、その中には、透過波+反射波=1というのも常に含まれます。 複素行列の計算なので Excelでできなくはないのですが大変ですし scilabは使ってました。 (Excelにある複素数と行列は、複素行列として合体できる仕様にはなっていないのです) MATLABに似たコマンドたちがうごめく、あの数値計算に特化したプログラミング言語?です ただし現在のMATLABとは違ってscilabはフリーです。 また、MATLABとは似てるんですが、互換性はないといわれているそうです。 あと、有志のみなさんが作ったものなので、バグや冗長性がまだ潜んでいることがあるようです。 まあフリーツールなので大目に見てね、みんな自由に生きているって感じですね。 さて、scilabの画面を見ると、閉じていないので、一見、プログラミング言語のように見えないかもしれません。 しかし、SCINOTESという、閉じたファイルにすることもでき そういう見方をすればだんだんプログラミング言語っぽく見えてくるかもしれません。 ただし、実行ファイルが作られるわけではありません。 (作ったファイルからデータを出したり入れたりすることはできそうな気はします) この式はscilabで、kやk1、aやbに適当な数値を入れて検算しました。 ========== k=2,k1=4,a=2,b=5
a11=exp(-%i*k*a)
a21=-%i*k*exp(-%i*k*a)
a31=0
a41=0
a12=-exp(k1*a)
a22=-k1*exp(k1*a)
a32=exp(k1*b)
a42=k1*exp(k1*b)
a13=-exp(-k1*a)
a23=k1*exp(-k1*a)
a33=exp(-k1*b)
a43=-k1*exp(-k1*b)
a14=0
a24=0
a34=-exp(%i*k*b)
a44=-%i*k*exp(%i*k*b)
a15=-exp(%i*k*a)
a25=-%i*k*exp(%i*k*a)
a35=0
a45=0
a1=[a11;a21;a31;a41]
a2=[a12;a22;a32;a42]
a3=[a13;a23;a33;a43]
a4=[a14;a24;a34;a44]
a5=[a15;a25;a35;a45]
B=det([a5,a2,a3,a4])
C=det([a1,a5,a3,a4])
D=det([a1,a2,a5,a4])
F=det([a1,a2,a3,a5])
G=det([a1,a2,a3,a4]) =========== このように、scinotesに書いてます。 横ではなく、縦に並べているのも、可視化のためで 上2行のexpにはa、下2行のexpにはb 奇数行目の次元は無次元、偶数行目の次元は波束kの次元 1列目と4列目と5列目にはexpにkが、 2列目と3列目にはexpにk1が入り 2行目、4行目、5行目のexpの中身はプラス 1行目、3行目のexpの中身はマイナス 2,3列目の係数は4つのうち2つがプラスでもう半分がマイナス という対称性みたいのを割りとあてにしてました。 B,C,D,Fは列ベクトルとして [a1,a2,a3,a4]の逆行列をa5の列ベクトルに左から掛け算すればそれはそれで計算結果は出るのですが 解析計算での4次行列の逆行列は面倒で クラメルの公式を使っていたため分子と分母それぞれで確かめておきたく scilabでもそのようにしてました。 {()^(-1)(B;C;D;F)にdet([a1,a2,a3,a4])を掛け算するという方法もありっちゃありでしたけどね} そのために、一旦列ベクトルとして縦に並べてから、その列ベクトルを [a1,a2,a3,a4]などとあとから横に並べて行列にするネスト形式を取っていました。 (横から縦、ではなく縦から横にボトムアップした) C=det([a1,a5,a3,a4]) G=det([a1,a2,a3,a4]) C=C/G のようなことが簡単に行えますからね。 この段階で、解析計算とscilabの結果が無矛盾となっても、 前提がそもそも間違っている可能性が否定できなかったので、 ちゃんと波動関数としてつながるのを確認するまで、掲載は控えていました。 それでトンネル障壁の極限を取りつつ、楽なほうから検算を行っていたのです。 また、k=2、k1=4、a=2、b=5などというパラメータも、決して褒められたものではなく 大きな数値が出てしまうため丸め誤差などが気になっていました。 exp(+)とexp(-)を加減算するわけですからね、一見合っているように見えても 微妙に間違っているかもしれません つづく PR
昨日はここまでやりました。
ここで、b=0の極限でどうなるのか試してみますと B=0、F=1という、自由粒子の解が出てきます。 では逆に、b→∞の極限ではどうなるでしょうか。 そのために、分母分子をcosh(ハイパボリックコサイン)で割ってみましょう。 そうすると以下のようになります。 その上で、b→∞にもっていきますと、tanh(ハイパボリックタンジェント)が1になり ハイパボリックコセカント(cosech)はゼロになります。 が、Dについてはexp(k1b)との掛け算があるので油断は禁物です。 検証していきますと、以下のようにちゃんと有限の値に収束することがわかりました。 ですので、 こうなります。 |B|^2=1になることはよかったら各自計算してみてください。 反射波がまったくなくなっていますね。 ただ、障壁の高さが有限なので、少しだけ壁の中に波動関数がしみ込んでいるのがわかるかと思います。 いわば、右半分だけの有限深さ井戸型ポテンシャルというわけです。 では、このトンネル障壁の高さを無限にしたら、ちゃんとしみ込まないようになるのでしょうか k1→∞の極限を取りたいので、分母分子をk1の2乗で割ります。 このようにしてからk1→∞の極限をとると このように、逆位相の反射波だけが生き残ることがわかるかと思います。 実は、bが有限のまま、k1→∞の極限でも同じ結果になります。 この状態から、k1の2乗で分母分子を割ってみましょう。 ここでk1→∞にすると またしてもDが怪しいですが、先ほどと同じ計算で、expとcosecの掛け算は2に収束してくれるので B=-1以外全部ゼロになり bが有限でも無限でも関係なく の結果になることがわかります。 つまり領域ⅡにもⅢにも波動関数はないのですが 領域Ⅰには波動関数があり Ψ1=exp(ikx)+Bexp(-ikx) のB=-1なので Ψ1=exp(ikx)-exp(-ikx)=2isin(kx) ということになります。 虚部に関しては、固定端反射の「節」と同じ結果になり 実部に関してはゼロなので、固定端反射の「節」でありながら自由端反射の「腹」でもある、という、なんとなーくだけどもコーシー条件っぽさが残る結果になりました つづく 追記 トンネル障壁の高さをゼロにした極限は、今の状態のままだと実は解けなくて 粒子のエネルギーが障壁よりも高い状態にも拡張した式を構築する必要があるため また今度ということで^^; 領域Ⅰ、Ⅱ、Ⅲともに指数関数の中身が実数ではなく純虚数になりますからねえ・・・ 数値計算だと、井戸型ポテンシャルでもやったんですが、あふれ出る貞子たんのように汎用性高いんですけどねえ
昨日のブログ末尾に「つづく」と書いたな?あれは嘘だ。
「量子きのこのトンネル」改めて配信決定! 先日な「トンネル効果 数式」で画像検索かけたんよ。そしたらエゴサになってしまって 当時の自分に愕然としたんだよ。 2015年3月8日のブログだ。 トンネルの入り口をx=0としてやがる!!!! つまりx=bって値だけが必要で、x=aなんていらんかったんや!!! 自分のセンスの劣化にorzしたわ 頭にきたので、解析計算のaを0に置き換えるだけで飽き足らず、 たーのしー行列式の掃き出し法からやり直したんだよ! 聞いてください。トンネル効果。 まず連立方程式はこうなる それから分母はこうなった! B(ack)の分子はこうなった!!! F(orward)の分子はこうなった! 以上あらすじおわり! CとDを出そう。 Cは「2行目」なので、「2列目」を置き変える。 ②←②+ik① Dは「3行目」なので、「3列目」を置き変える。 ②←②+ik① まとめるとこうなります。 2を約分して さらにiを約分して exp(ikb)でも約分できることがわかったので ユーリカするともっと綺麗になりそうですね! 以上です。つづく とりあえず無矛盾なだけでなく、波動関数もちゃんとつながって大丈夫そうなので、掲載します。 x=aからx=bまで、ポテンシャルU=U0で、そのほかはU=0のトンネル障壁があったとして そこにE<U0のエネルギーでやってくる自由粒子のトンネル効果の反射と侵入と透過について書きます。 波動関数Ψは、x<aをⅠ、a<x<bをⅡ、b<xをⅢとして Ψ1とΨ2とΨ3に分けることができます。 このΨ1とΨ2が、x=aでΨの0階と1階微分両方が連続 また Ψ2とΨ3もx=bでΨの0階と1階微分両方が連続 というコーシー境界条件を満たしている必要があるそうなので この条件を解きます。 領域ⅠではE>Uなので、Ψ''+Ψ=0の形の微分方程式を解くことになります。 Ψ1=Aexp(ikx)+Bexp(-ikx) です。 領域ⅡではE<Uなので、Ψ''-Ψ=0の形となるので、指数の肩は純虚数ではなく実数となり Ψ2=Cexp(k1x)+Dexp(-k1x) です。 ここでAとCは進行波、BとDは反射波を意味しています。 領域Ⅲでは反射を考慮する必要がないため、進行波 Ψ3=Fexp(ikx) のみの自由粒子となります。 x=aにおいて 0階微分 Ψ1(a)=Aexp(ika)+Bexp(-ika)=Cexp(k1a)+Dexp(-k1a)=Ψ2(a) と、1階微分 Ψ'1(a)=ikAexp(ika)-ikBexp(-ika)=k1Cexp(k1a)-k1Dexp(-k1a)=Ψ'2(a) が成り立っていなければなりませんし x=bにおいても 0階微分 Ψ2(b)=Cexp(k1b)+Dexp(-k1b)=Fexp(ikb)=Ψ3(b) と、1階微分 Ψ'2(b)=k1Cexp(k1b)-k1Dexp(-k1b)=ikFexp(ikb)=Ψ'3(b) が成り立っていなければいけません。 4本の式に対して、A、B、C、D、Fの5つの変数になってしまいました。 そこで、4本の式全部をAで割り算し B/Aを新しいB C/Aを新しいC D/Aを新しいD F/Aを新しいFと定義しましょう そうすると、以下のような連立方程式もとい行列方程式が成り立ちます。 この左辺の4行4列の行列の逆行列を、両辺に左から掛け算すれば、ただちにB、C、D、Fは求まるのですが 解析的な計算だと大変なので、クラメルの公式を使いましょう。 まず、4変数に共通する分母を求めます。 先ほど左から逆行列を掛け算しようとした行列の行列式そのものなので こうなります。 2行1列目を消せば、掃き出し法がつかえそうなので、 2行目に、ikを掛け算した1行目を足して、2行目に代入しましょう。 ②←②+ik① そうするとこうなるので、 今度は3行3列目を消したら掃き出し法がつかえそうです。 なので、3行目から、ikを掛け算した2行目を引いて、3行目に代入しましょう。 ③←③-ik② そうすると結局、分母はこのようになります。 分母=exp{ik(b-a)}[2(k^2-k1^2)sinh{k1(b-a)}+4ikk1cosh{k1(b-a)}] それでは次はBの分子を求めます。 Bは「1行目」なので、4行4列の「1列目」を、右辺の縦ベクトルと置き換えると、求めることができます。 先ほどの分母同様、 ②←②-ik① をしたあと、 ③←③+ik② をしていき B→2exp{ik(a+b)}(k1^2+k^2)sinh{k1(b-a)} を得ます。 次に、諸事情でFから計算していきましょう。 Fは「4行目」なので4行4列の「4列目」を置き換えます。 F→4ikk1 となりました。 実はこのBとF、ただ順番に文字を当てはめて、エネルギーであるEを抜かしただけなのですが 偶然にもBack(反射波)とForward(透過波)というダジャレになっておりまして 反射波の絶対値の2乗と透過波の絶対値の2乗を足すと、必ず1になるので、検算に向いているのです。 入射した波は反射するか透過するかどちらかしかないからです。 |B|^2+|F|^2=1 なので、分子は exp(iなんちゃら)は無視して 分母もexp(iなんちゃら)は無視して、 せっかく分けた実部と虚部の2乗同士を足しましょう この、上から下を引いてゼロになっていればいいわけですから k1^2とk^2をそれぞれX、Y 双曲線関数の中身は全部同じなので、chとshに略記しますと これの上から下を引きますと、第1項がまず消えます。 残りがこうなるので、4で割ってしまいますと ch^2-1-sh^2 となります。これは、双曲線関数バージョンのオイラーの公式がありまして ch^2-sh^2=1 となっているので、恒等的にゼロだとわかりました。 つまり、|B|^2+|F|^2=1が証明されました。 つづく
トンネル効果の条件として、トンネル障壁の高さをゼロにするのはめんどくさいので
幅をゼロの極限に取ったら、自由粒子と同じ結果になることがわかりました。 じゃあ逆に、幅を無限大の極限に取ってみたらどうだろう? と思ったんですが、これはどうも、普通にトンネル効果を解いてから極限を取った方が楽かもしれません。 久々に解いているので、手計算ミスが多く、今の状態では検算のための極限としてはどうも使えないみたいです しかし十分に興味深いとは思います。 深さが有限なのか無限なのかはおいといて 井戸型ポテンシャルの左半分の絶壁<まな板>がごっそり消えているので 左側は少なくとも束縛されておらず 実数にされる必要もないかもしれない。複素数の螺旋を描かせてもらえるかもしれない そんな状態で、右側の絶壁<かなりまな板だよこれ!>ではディリクレとノイマンの両方である コーシー境界条件を課せられるわけで(無限深さだったらコーシーじゃないかも) これって古典で言うところの反射じゃないですか完全に。 しかもそれが粒子としてではなく波動として描かれるわけだから 自由端になるのか固定端になるのか、とても興味があるんです ポテンシャルの深さ次第でロビン境界条件に・・・いや違うか・・・ ところで、そんなことを考えながら運転していたら 「観測とはなにか」というテーマを思い出しまして 「観測された瞬間、井戸型ポテンシャルに入るのではないか」 という解釈が生まれましたが、まあこんな発想どこにでも落ちてますよね
シミュレーション動画を作る上で、似たような機能であるだけに、相性が悪いのだ。
たとえば、2015/11/15の日記にあるgifアニメ マクロ一切組まず、循環参照で行ったシミュレーションなんだが 波源の振動をインパルスではなく正弦波にするためにはどうしたらいいかと考えて わざわざy''+y=0の微分方程式を作って解いていたが、その必要はどうもないようだ。 循環参照で A1=A1+1 といったセルがあったとして、このA1セルをsinにぶち込めばいいだけの話じゃないか。
y''+ky=0
こいつの初期値の、初期位置y(0)と初速度y'(0)に適当な数を入れると、 実数から複素数への体の拡大みたいのが起こせます。 たとえば差分方程式にして {y(n+1)-2y(n)-y(n-1)}/dt^2=-k*y(n) ってして、 y0=i、y1=1ってしたら、複素平面にはみ出した振り子 つまりほぼ円になったオイラーの公式が出てきます。 初期値次第では真円の螺旋だけじゃなく楕円の螺旋にもできるみたいですね。 もちろん実数だけでやれば直線偏光みたいな振り子的解が出てきますが、 y0=±i、y1=±i(複合同順でない)とかだと、いわゆる振り子の円弧を1次元とみなすみたいな線形従属っぽい感じで 実数あるいは純虚数の振動解だけが有限になります。 今はあまり余裕がないので詳しくは書きませんが y(n+1)=IMSUB(IMPRODUCT(IMSUB(2,k*dt^2),y(n)),y(n-1)) の式で、Excelでも出せますよ。
そういえば昨日の日記ですね
前にも似たようなこと考えていたことを思い出しまして。 熱力学もやっぱり非線形成分含んでるなって。 だってあいつヒステリシス起こすじゃないすか。 じゃあ非線形成分あるよね。 ただ、この非線形成分が、熱力学に根本的に備わっているのかと言われるとよくわかんね。 カルノーサイクルを使ったぽっぽ船にしても、同じシステムでカルノーサイクルは起こせる ただ、それが純粋に熱力学のおかげなのか、あるいはシステムを構築する中に摩擦を含んでいるから、だとかそんなんなのかが、よくわかんないんだよね ヒステリシスといえば、前にシュミットトリガのバッファなんかを普通のインバータをコンパレータ(オペアンプ)と抵抗で再現するってのを、どっかのサイトで回路図を見て 僕もやろうと思ったんだけど頓挫して 結局あれはなんだ、なんでヒステリシス起きるようになったのかよくわからん いつもうろ覚えになるんだけど、回路図見るとダイオード入ってないんだよな。 かといってコンパレータに非線形性を求めるのもどうかと思うわけで 理想のオペアンプはコンパレータと同じで、線形増幅器って見なされてるんだよな 中身がトランジスタだとしてもよ (増幅率がどのくらい有限なのかとかの現実的な問題で、コンパレータとして用いるかオペアンプとして用いるかが変わってくるらしい) いやこれ考えるといつも別のこと考え始めちゃうんだよな 構築した外部パーツとしての抵抗で消費するエネルギーと、構成したシュミットトリガのヒステリシスが消費するエネルギーって、どう関係するのかっていうやつです ああそうそうヒステリシスといえば、メモリスタも変な立ち位置ですよね。 インダクタンス、キャパシタンス、抵抗に次ぐ第4の受動部品ってポジションの癖にヒステリシス特性持ってて、ヒステリシス持ってるから記憶もする、まさにメモリスタ。記憶するレジスタ。 いやいやレジスタは元々記憶するじゃん。あれじゃねえよ。デジタル部品じゃなくて レジスタンスのほうのレジスタ。
経済にはどうも、「プラスだけ見てマイナスは見ない」などといった、一方通行性が根本から潜んでいるように思える。
そして、経済はどうしても必要とされてしまうようだ。 たとえばパクツイ問題 たとえ無償のやり取りであっても、「無断転載を禁止したくない」という流れにはどうしてもならない。 極黒のブリュンヒルデのようにソーサリアンに俺はなる! ってなった結果、人類から「神」ではなく「パクられることに対する嫌悪感」を取り除いたとして しかしソーサリアンにはなれない。 聖杯が優勝者に思考実験をさせて、ソーサリアンにできなくしているのだ。 パクる理由が善意だけとは限らんだろう?と囁くのだ ここで、やはり一方通行性が出てくる。 これはなんだろう、エントロピーの増大に似ているのか それともラチェットやダイオードのようなものなのか。 ダイオードの一方通行性は非線形に由来する。 ラチェットの一方通行性も、どうやら摩擦という非線形性からきているようだ。 エントロピーに関してはまだ僕はよくわからない なぜかいろんなところに根源的に現れ(ているように見え?)る一方通行性や非線形性 一体どうしてそんな根本レベルから生えているのか、不思議に思える。 宇宙はそんなにシンプルじゃないのかもしれない。 もしそれを僕が受け入れられたとして 僕はそんなことは気にしていたくない。 宇宙がどうあろうが、僕自身はシンプルなのが好きなんだ |
カレンダー
カテゴリー
最新CM
[12/30 buy steroids credit card]
[09/26 Rositawok]
[03/24 hydraTep]
[03/18 Thomaniveigo]
[03/17 Robertaverm]
最新記事
(01/01)
(03/19)
(03/18)
(03/18)
(02/23)
(02/14)
(02/12)
(01/03)
(09/23)
(09/23)
(02/11)
(05/30)
(05/28)
(05/28)
(05/27)
最新TB
プロフィール
HN:
量子きのこ
年齢:
43
HP:
性別:
男性
誕生日:
1981/04/04
職業:
WinDOS.N臣T
趣味:
妄想・計算・測定・アニメ
自己紹介:
日記タイトルの頭についてるアルファベットは日記の番号です
26進数を右から読みます 例:H→7番目、XP→15(P)×26+23(X)=413番目。 A=0とする仕様につき一番右の桁はAにできませんのでご了承くださいズコー
ブログ内検索
アーカイブ
最古記事
(05/11)
(05/11)
(05/13)
(05/13)
(05/13)
(05/13)
(05/13)
(05/13)
(05/14)
(05/14)
(05/14)
(05/14)
(05/16)
(05/16)
(05/16)
アクセス解析
|