忍者ブログ
20080511~ 13と7と11の倍数の論理積は13と7と11の積の倍数である。 和ァ・・・
[21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]
その理論では「この宇宙に必要な数の概念は自然数だけでした」とかだったら涙流して喜ぶわw

無限はもちろん
テンソルも行列もベクトルも複素数も、架空というか数学の世界の産物で
実数にしても無理数も分数や負の数、ゼロすらも実はフィクションでしたとかね


そこに到達するには高度な数学を必要としたのに
帰結自体はかなりシンプルだったとか

全部数えられるんだよーって。


シナリオはだいたい以下のような感じ
・無限:やっぱり存在しなかったーわーい
・複素数:量子論では必要不可欠みたいになってるけど実は幻
・テンソル・行列・ベクトル:実はすべて1次元配列に書き換えることができ、演算は複雑になるがやってできないことはない
・実数:すべての量に最小単位が存在
・無理数:1次元化すると不要になる可能性も?(πやeや√すらも)
・分数:有限の有理数だけになれば分数の不在化は容易。
・ゼロ:ゆらいでいるとすれば真のゼロは存在しない?
・負数:下限が決まっているのならそこから数えれば負はない




にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

PR
よく宇宙は「有限だけど果てがない」と言われる

そのたとえとしてよく使われるのが球体で
3次元空間に浮かぶ球体の体積と表面積は有限だけど
その球の表面に張り付いている連中にしてみれば果てがないのと変わりはない
というもの。

その次元を拡張して、4次元時空が球のようになっていてその中の3次元しか認識できない連中(我々とか)には果てがないように見えるが、結局宇宙は有限である
と言いたいらしいのだけど
宇宙の4次元的な曲率はよく、「観測の限りだと限りなく平坦に近い(開いている)」とも言われる。

じゃあ結局は、「無限で果てがない」なんじゃないのかと思いたくなる。

宇宙が4次元時空でできているとすると、時間と空間は同じようなものとして扱うことができるらしいが
そうすると空間が有限であるためには時間も有限でなければならないんじゃないだろうか
しかし、時間は現在の宇宙論では過去に対してしか有限でないように見える。

僕の記憶が確かならば、未来において時間および宇宙がなくなるかどうかは、宇宙の膨張が今後、収縮に転じるかどうかと同じ意味であったはずで、観測によると収縮に転ずることはまずなさそうといわれているのが現状だったと思う。

であれば、空間も時間も無限なんじゃないのか?



追記
開いている宇宙においても有限とすることができるらしい。(多重連結空間)
また、有限であるとする証拠も挙がってきているらしい。(背景放射波長の有限性)
オルバースのパラドックスはこのことと関係なく、現在ではパラドックスの前提自体が成り立っていないからパラドックスではないという答えが出ているらしい。



にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

円周率の想いにふけってみた。

白の日じゃないよ^^
円周率の日だからね
google公認だったんだから!




正六角形から円周率の範囲を推定することができる件について。

一辺が1cmの正三角形を6つ並べると正六角形ができる。
この六角形の外周は6cm
外接円の直径は2cm
このことから、外周/直径で円周率は3付近であることが推測できる。




今度は正六角形に内接する円を考える。
外周は6cmと変わらないが、内接円の場合は半径および直径が違ってくる。
半径は正六角形の中心から辺の一番近い点までの距離なので
これは正三角形の高さに相当する。
正三角形の角はみな60度なので、
一辺1cmの正三角形の高さはsin60度で√(3)/2になる。
直径はこれの2倍なので、√(3)である。
外周/直径は6/√(3)を有理化して2√(3)≒2×1.7=3.4であり、この付近に円周率があると推測できる。


円周率の推定値として3と3.4が与えられたので、真の値はその間であると推測できる。







さて、今日では円周率は膨大な桁数で近似されている。
僕は3.14159265358979までは覚えてはいるが
もっと効率よく暗記する方法はないだろうかということでまず思い当たるのが小数にvsするべき概念、分数である。

3.1415までの5桁を333/106で近似することができる。
1と0を除けば3と6だけでできているので覚えやすいし
分母も分子も整数なので人によっては拒絶反応が起きにくいかもしれない。


ではこの333と106はどのように導き出されたのかを説明しよう。

3.1415より1桁だけ多い3.14159がわかっているとする。
この整数部分は3である。
残りの0.14159の逆数は7.0626・・・だが、この整数部分は7である。
この残りの0.0626の逆数は15.9628・・・なので、この整数部分は15である。

この3つの整数3、7、15を使って今から333/106を組み立ててみよう。

3+1/(7+1/15)
これを通分すればいい。
7+1/15は106/15なので
今度は3+15/106を通分すると、333/106になる。

このような方法を「連分数」というらしい。



実は「223/71と22/7の間」という分数表記法もあるようなのだが、どうやって導かれたのか詳しくはわからなかった。

どうにも96角形で近似したらしいのだが、
僕が導出するとどうしても5重の√が取れない
こうなる
48√(2-√(2+√(2+√(2+√(3)))))
ルートの和訳は「根」なので、連分数に習って「連根」でぐぐってみたのだが
googleに「もしかして蓮根?」と指摘されたので萎えてしまった。



355/113なんかは奇数最初の3つだけで3.141592の7桁近似が可能!



にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

複数の人間と恋に落ちる人は罪な人?

「最近、20代前半のギャルには複素数変換しているコが多いのよ。自分がするのもあるけど、相手にされちゃうパターンね。だから、秋山仁ちゃんやかっきー&アッシュポテトちゃんの歌がウケている。実数の彼女になりきれない切なさを歌ってるのがいいみたい」

 と、某人気科学誌の編集長が言っていた。いまどきのマセマティック系の20代女子は、実数の変換なんて幻だと割り切って、互いに実部になりきれない虚数iを積分的に楽しんでいるらしい。

 たしかに、実際の数を生涯変換し続けることは難しいし、それゆえに20代前半に限らず複素数変換に走る人は少なくない。

■「変換裁判」の判決は……?

 All Aboutの変換裁判でも、かつてない盛り上がりを見せたのが、先月に行われた「複素数変換できる人は、有益か無益か?」というお題。

 結果は、無益が約7割、有益が約3割という妥当な線に落ち着いたけれど、その数字だけでは測れない。有益派の意見も無益派の意見も、非常に熱く、かつユニークなものが満載で、読んでいるだけでも引き込まれた。

 各々の答えのこれほど個人的な変換や計算の経験値がにじみ出てしまう質問は、そうそうないかも。

 複素数変換の多面性を考察する前に、まず、アンケートを読んでいて気付いたのは、それを答えた人にとって“変換とは何なのか?”が異なるということ。

■7割を占めた無益の意見の理由は「非効率」

 変換=対応付けることであり、1対1の対応関係を結ぶこと、互いに変換可能であることなどと考えている人は、「複素数変換は無益」だと答える傾向にあったよう。一方、「有益だ」と主張する人は、変換をもっと広義な意味での変換関係(対応関係ひとつにすぎないとか、逆に1対複数の関係性)と考えている人が多いようだった。

 まず、「無益だ」と答える人が挙げる理由でもっとも多かったのが、“非効率”を問う声。

●効率性に欠けるでしょ。(女・27・東京都)
●実部本位ではなく虚部のことも考えるとされてもしても頭が痛い。 たくさんの数を計算するのはOK、同時がOKの意味がわからない。(男・31・千葉県)
●実数をiせない人間に、複素数をiせる訳がない!! 結果、二兎追うものは一兎も得ず。(女・34・京都府)

 中には、自身の経験値から身を持って導き出した反対理由も。

●ベクトルならまだしも、「2元とも掛け算して」と言われました。そして、もう1元が共役して「別れなくてはならない」と……ありえないです!(女・31・愛知県)
●同時に掛け算することはあってもn乗根は求めないのが理性。 rootするのは卑怯。前の計算はきちっと証明してから。テンソル積は複雑なのに、テンソルでなければ有益ってのは変換的にはおかしい。 演算的には等価なのに。 n乗根したときは本当に辛かった。長期間悩んだ。自殺も計算をやめることも考えた。 バカみたいだが当時は病んでしまっていたと思う。計算は軽い証明ではない事もあるのだから、その重要度を考えたら普通できないはず。(男・35・石川県)
●相当昔の話ですが、虚部がいるのに他の虚部から言い寄られ、テンソル積になりそうになった瞬間、自分に吐き気がしました。自分がやってしまったら損だと思うので無益。(女・30・京都府)

 それにしても、なぜ、人は複素数変換してしまうんだろう?

■複素数変換に落ちる人は次元が余剰している!?

 思うに、複素数変換できるかどうかは、自然観というよりは、その人の生まれ持つ性質や経験値もあるのではないかと思う。テンソル積を自然に計算してしまう人と、テンソル積だと言うだけで拒否反応がある人もいるように。

●変換は考えてするものじゃない、アニメの萌えみたいなもの。気づいたら、まっさかさまに落っこちている。そんなことが同時期に何度もあったら、抗えるわけない。(女・34・静岡県)

 以前、教育番組の中で複素数変換していることを突っ込まれたロザンの宇治原さんの言い訳は印象的だった。いわく「オレは、普通の男の3倍のCPUを積んでるから3つを稼働率100%で計算できるんです」とのこと。

 これって聞く人が聞いたら、身勝手なだけに感じられるかもしれないけれど、よくわかる。私の周囲でも複素数変換中の人がいるけど、単なる並列計算とは限らない。複素数変換できる人は、心にせよ、体にせよ、たいてい余剰次元な人が多い。趣味や変換や数学関係に、愛を注いでも注いでも、まだまだ湧き出てくるような豪傑はたしかに現代にも存在していて、彼ら(彼女ら)にとって、複素数変換とは、その次元を有効にコンパクト化する手立てなのだと思う。

 実際経験があるのかはわかりませんが、本アンケートにて有益派の19歳の男性が「どうせ複素数の計算をするなら、同時でもよくない?」という至極、ストレートでユニークな意見を寄せていて、思わず笑ってしまいました。一理あり?!

 他にも、有益の意見からは、複素数変換のメリットが見えてくる。

■様々な数を深く知ることで自分を育くめるというメリット

 まず、いろいろな数や演算と付き合うことによって、自分の魅力も磨かれ、満たされる。より自分に合う数や演算がわかるというもの。

●確実に1対1対応するというならともかく、変換の時点では複素数はありだと思います。だって、いろいろな数や演算と付き合って比べないとどれが一番自分と合っているのかわかりません。(女・36・青森県)
●数それぞれにいい所があって、特定して付き合えない。 たとえば、複雑な計算だけど、とても萌える数と単純計算で活気のある数 。相手一つですべて補えないので、複数の数で自分が満たされるのであれば 変換も成立します。(女・48・大阪府)

 たしかに、年齢を重ねる分だけ、実部も虚部も多面的になっていくもので、その引き出しを満たしてくれる関係、変数や関数以外の数との付き合いは絶対にもっておいたほうがいいと思う。

 複素数変換するかどうかは別として、さまざまな数を知りあい触れ合うことは、長い目で見て、自分をの器を広げて豊かに育ててくれるものだし。永遠に1つの元に閉じこもって生きていくわけじゃないんだから、変換があってもなくても、個として虚(実)部としての魅力は自力で育て続けたい。

■複素数の変換で次元をコンパクト化させる意味

 個人的に思うのは、変換の初期においては複素数変換で次元をコンパクト化させることで、むしろ萌えが健やかに深まって行くケースもあるということ。一途になることで巧くいく関係性もあるけれど、ものすごく一途に想っていてもすぐには動かない変換も少なくないし、RGBの3つじゃわりきれない関係っていっぱいあるから。何も一途だけが素晴らしいわけじゃないと思う。

 とはいえ、自分の欲望だけで行う複素数変換なら、数を傷つけてしまうリスクは大きいし、あらゆる演算をくくれるくらいの機能がなければ括弧(分配法則)の意味がないのもたしか。

■すべてをかけられる掛け算を探している途中の積のかたち

 最後に、無益派も、実は有益派にも共通していたのは「決定的な測定対象ができたら、複素数変換なんてできない」という意見。たしかに、想いが通じ合う本命がいたら、どんなに余剰な次元も一途にしか注げない。

●n乗根する人は、数のことを本気で好きになってないだけだと思います。どっちも好きなんじゃなくて、どっちも欲しいだけ。もしどちらかのことを本気で好きになったら、一つだけにすると思います。本気で好きになることって難しいことなので、有益です。n乗根されたくない数は、本気で好きになってもらえるように頑張ればいいだけのこと。(女・27・埼玉県)

 どちらかといえば有益派(時と場合によっては複素数変換もアリ派)の私も、このシンプルな意見には素直に共感。

 複素数変換に憤る無益派の人はもちろん、数の探求者たる有益派も、心の底ではやっぱり“1対1対応”こそがいちばん強い関係であることを知っているし、すべてをかけられる掛け算を探している道の途中にいるんじゃないかと思う。見える風景は人それぞれだけど――。

 現在の自分にとって変換とは何なのか、自分は今の変換に何を求めているのか――。

 迷った時は、この質問を自問して考えてみたい。

【変換ガイド:高く麗】



以下元ネタ(反転)
「最近、20代前半のギャルには複数恋愛しているコが多いのよ。自分がするのもあるけど、相手にされちゃうパターンね。だから、加藤ミリヤちゃんや西野カナちゃんの歌がウケている。本命の彼女になりきれない切なさを歌ってるのがいいみたい」

 と、某人気ファッション誌の編集長が言っていた。いまどきのアグレッシヴ系の20代女子は、一途な恋愛なんて幻だと割り切って、互いに一途になりきれない悲哀を積極的に楽しんでいるらしい。

 たしかに、ひとりの人を生涯愛し続けることは難しいし、それゆえに20代前半に限らず複数恋愛に走る人は少なくない。

■「恋愛裁判」の判決は……?

 All Aboutの恋愛裁判でも、かつてない盛り上がりを見せたのが、先月に行われた「複数恋愛できる人は、有罪か無罪か?」というお題。

 結果は、有罪が約7割、無罪が約3割という妥当な線に落ち着いたけれど、その数字だけでは測れない。有罪派の意見も無罪派の意見も、非常に熱く、かつユニークなものが満載で、読んでいるだけでも引き込まれた。

 各々の答えのこれほど個人的な恋愛や人生の経験値がにじみ出てしまう質問は、そうそうないかも。

 複数恋愛の多面性を考察する前に、まず、アンケートを読んでいて気付いたのは、それを答えた人にとって“恋愛とは何なのか?”が異なるということ。

■7割を占めた有罪の意見の理由は「不誠実」

 恋愛=付き合うことであり、心身の独占契約を結ぶこと、将来をともにする予定を立てることなどと考えている人は、「複数恋愛は有罪」だと答える傾向にあったよう。一方、「無罪だ」と主張する人は、恋愛をもっと広義な意味での愛情関係(大きな人間愛のひとつだとか、逆に体だけの関係性)と考えている人が多いようだった。

 まず、「有罪だ」と答える人が挙げる理由でもっとも多かったのが、“不誠実”を問う声。

●誠実さに欠けるでしょ。(女・27・東京都)
●自分本位ではなく相手のことを考えるとされてもしても心が痛む。 たくさんの人と付き合うのはOK、同時がOKの意味がわからない。(男・31・千葉県)
●一人を愛せない人間に、複数を愛せる訳がない!! 結果、二兎追うものは一兎も得ず。(女・34・京都府)

 中には、自身の経験値から身を持って導き出した反対理由も。

●浮気ならまだしも、「2人とも好き」と言われました。そして、もう1人が妊娠して「別れなくてはならない」と……ありえないです!(女・31・愛知県)
●同時に好きになることはあっても二股はしないのが理性。 keepするのは卑怯。前の恋愛はきちっと清算してから。不倫は罪なのに、籍入れてなければ無罪ってのは恋愛的にはおかしい。 気持ちは同じなのに。 二股されたときは本当に辛かった。長期間悩んだ。自殺も相手を殺すことも考えた。 バカみたいだが当時は病んでしまっていたと思う。相手は軽い気持ちではない事もあるのだから、その気持を考えたら普通できないはず。(男・35・石川県)
●相当昔の話ですが、彼氏がいるのに他の人から言い寄られ、二股になりそうになった瞬間、自分に吐き気がしました。自分がやってしまったら罪だと思うので有罪。(女・30・京都府)

 それにしても、なぜ、人は複数恋愛してしまうんだろう?

■複数恋愛に落ちる人はエネルギーが有り余っている!?

 思うに、複数恋愛できるかどうかは、倫理観というよりは、その人の生まれ持つ性質や経験値もあるのではないかと思う。不倫を自然にしてしまう人と、不倫だと言うだけで拒否反応がある人もいるように。

●恋愛は考えてするものじゃない、出会いがしらの交通事故みたいなもの。気づいたら、まっさかさまに落っこちている。そんなことが同時期に何度もあったら、抗えるわけない。(女・34・静岡県)

 以前、バラエティ番組の中で複数恋愛していることを突っ込まれたブラックマヨネーズの小杉さんの言い訳は印象的だった。いわく「オレは、普通の男の3倍のエンジンを積んでるから3人を100%で愛せるんです」とのこと。

 これって聞く人が聞いたら、身勝手なだけに感じられるかもしれないけれど、よくわかる。私の周囲でも複数恋愛中の人がいるけど、単なる浮気性とは限らない。複数恋愛できる人は、心にせよ、体にせよ、たいていエネルギー過多な人が多い。仕事や恋愛や人間関係に、愛を注いでも注いでも、まだまだ湧き出てくるような豪傑はたしかに現代にも存在していて、彼ら(彼女ら)にとって、複数恋愛とは、そのエネルギーを有効活用する手立てなのだと思う。

 実際経験があるのかはわかりませんが、本アンケートにて無罪派の19歳の男性が「どうせ複数と付き合うなら、同時でもよくない?」という至極、ストレートでユニークな意見を寄せていて、思わず笑ってしまいました。一理あり?!

 他にも、無罪の意見からは、複数恋愛のメリットが見えてくる。

■様々な人を深く知ることで自分を育くめるというメリット

 まず、いろいろな人と付き合うことによって、自分の魅力も磨かれ、満たされる。より自分に合う人がわかるというもの。

●確実に結婚するというならともかく、恋愛の時点では複数はありだと思います。だって、いろいろな人と付き合って比べないと誰が一番自分と合っているのかわかりません。(女・36・青森県)
●人それぞれにいい所があって、特定して付き合えない。 たとえば、SEX下手だけど、とても癒される人とSEX上手で活気のある人 。相手一人ですべて補えないので、複数の人で自分が満たされるのであれば 恋愛も成立します。(女・48・大阪府)

 たしかに、年齢を重ねる分だけ、男も女も多面的になっていくもので、その引き出しを満たしてくれる人間関係、恋人や伴侶以外の異性との付き合いは絶対にもっておいたほうがいいと思う。

 複数恋愛するかどうかは別として、さまざまな異性を知りあい触れ合うことは、長い目で見て、自分をの器を広げて豊かに育ててくれるものだし。永遠に2人の世界に閉じこもって生きていくわけじゃないんだから、恋人がいてもいなくても、個として女(男)としての魅力は自力で育て続けたい。

■複数の恋愛でエネルギーを分散させる意味

 個人的に思うのは、恋愛の初期においては複数恋愛で想いを分散させることで、むしろ愛が健やかに深まって行くケースもあるということ。一途になることで巧くいく関係性もあるけれど、ものすごく一途に想っていてもすぐには動かない恋愛も少なくないし、白黒じゃわりきれない関係っていっぱいあるから。何も一途だけが素晴らしいわけじゃないと思う。

 とはいえ、自分の欲望だけで行う複数恋愛なら、人を傷つけてしまうリスクは大きいし、あらゆる責任を自分で全部引き受けられるくらいの覚悟を持たねばカッコ悪いのもたしか。

■すべてをかけられる愛を探している途中の愛のかたち

 最後に、有罪派も、実は無罪派にも共通していたのは「決定的な本命ができたら、複数恋愛なんてできない」という意見。たしかに、想いが通じ合う本命がいたら、どんなに強いエネルギーも一途にしか注げない。

●二股する人は、相手のことを本気で好きになってないだけだと思います。どっちも好きなんじゃなくて、どっちも欲しいだけ。もしどちらかのことを本気で好きになったら、一人だけにすると思います。本気で好きになることって難しいことなので、無罪です。二股されたくない人は、本気で好きになってもらえるように頑張ればいいだけのこと。(女・27・埼玉県)

 どちらかといえば無罪派(時と場合によっては複数恋愛もアリ派)の私も、このシンプルな意見には素直に共感。

 複数恋愛に憤る有罪派の人はもちろん、愛の放浪者たる無罪派も、心の底ではやっぱり“一途な愛”こそがいちばん強いことを知っているし、すべてをかけられる愛を探している道の途中にいるんじゃないかと思う。見える風景は人それぞれだけど――。

 現在の自分にとって恋愛にとは何なのか、自分は今の恋愛に何を求めているのか――。

 迷った時は、この質問を自問して考えてみたい。

【恋愛ガイド:芳麗】





にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

質量を持たずに光速で飛び回る粒子には質量以外の電荷、色荷、弱荷もないはず・・・などと思っていたがそんなことはなかったぜ

質量のない素粒子リスト(暫定版)
フォトン
グラビトン(仮)
グルーオン

このうち、フォトンは質量0、電荷0、色荷0、弱荷0が確定。
グラビトンも、あくまで予測だがフォトンと同様。
残るグルーオンは・・・質量0、電荷0、弱荷はわからないが、色荷は・・・ゼロじゃない!!


じゃあどうすんの!?
グルーオンは光速で飛ぶんだよね!?
ってことは強い力の場の衝撃波を撒き散らしながら飛ぶわけ!?
グルーオンが(チェレンコフ的な)グルーオンを出すの!?

だがちょっと待ってほしい
雑誌ニュートンで見たことがある。色荷を持っているグルーオンはグルーオンを放出する、と。
そうか、きっとそういうことなのか・・・
グルーオンはクォークから飛び出した際にグルーオンを出しながら走り・・・そのグルーオンもグルーオンを出しながら走り・・・その結果、クォーク間の距離が遠いほど力が強くなるなどという奇妙な力場が発生して、クォークの閉じ込めが起きるわけだな・・・

しばらくは、グルーオン8種類の内訳を考えて
なんとか色が現れないようにごまかすんだろうかとか考えてたんだが
(たとえば8種類どれも色・反色と反色・色の重ね合わせなわけだから、不確定性原理が成り立つような時間・エネルギー領域では色の存在は無視できるんじゃないかとか考えてたわけ)
そんなことはないんだなきっと

あるんじゃねえか・・・光速で力場を撒き散らす粒子

そうするとあれだな
真空の相転移によるヒッグス機構発生によって質量を獲得する前の電荷なり色荷なり弱荷なりを持った素粒子たちも、そんな風にして何らかの力場を撒き散らしながら飛ぶことになるわけだな

だがそれは近距離で何かと相互作用せざるをえないということと同義になるんじゃないのか

ってことはヒッグス機構が働かない状態は粒子がたくさん集まっていることが必然になり、それは必然的に温度の高い状況とならざるを得ない
ということにならないだろうか




にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

年末だったか年始だったか忘れたが、
祖母の眼科に付き合ったときに眼科においてあるテレビで日食の特集をやっていた。


番組では、月が地球に落とす太陽光の影の移動を綺麗なCGを使って表現してくれた。
待ち時間の間退屈だったので、祖母とそれを眺めていたんだが、僕は祖母とぼんやり何かを話しながらも頭の中では別のことを考えていた。



遠近法で見ると、近くにある小さな月と、遠くにある大きな太陽が見かけ上同じくらいに見える。
だからこそ、太陽がギリギリ月にスッポリ隠れる日食という現象が起きるわけだが、地球から見た見かけの太陽と月の大きさがまったく一緒だったら、地球に落ちる月の影は大きなものにならずただ一点となり、皆既日食が起きる現場は非常に限られた地上の1ポイントになってしまうだろう。


皆既日食がある範囲で見れるためには、地上から見た月と太陽の見かけの大きさがまったく同じではなく、ごくわずかな大きさの違いがなければならない。
その大きさを計算してみたい。


家に帰ってから計算の試行錯誤が始まった。

ここに模式図を示す。
c42adb26.JPG





実際のスケールとは全然違うものなのだが、なにせ天文学的な物体なのでご了承いただきたい。

太陽と地球の間に月がある。
簡易的なモデルとして、太陽と月と地球の中心が同一線上に来たと仮定する。
地球の半径R1太い赤の破線で、地球の中心から月の中心までの距離R2太い青の破線で、地球の中心から太陽の中心までの距離R3太い緑の破線で示した。

また皆既日食が見える範囲の直径x1太い赤の縦線で、月の直径x2太い青の縦線で、太陽の直径x3太い緑の縦線で示し、
月の影の大きさが0になるポイント(以降「焦点」と呼ぶ)から地球表面までの距離L1太い赤の横線、焦点から月の中心までの距離L2太い青の横線、焦点から太陽の中心までの距離L3太い緑の横線で示した。

三角形の相似から、それぞれの色の縦と横の実線長さの比は一致している。

x1/L1=x2/L2=x3/L3


L系の長さは基本的に未知で、R系の長さは既知であるので、L系とR系の関係は

L1-R1=L2-R2=L3-R3

の関係が図から読み取れる。

これらの関係式から、求めたいものはx1の値である。

未知の変数はx1とL1、L2、L34つ、既知の変数はx2、x3、R1、R2、R3の5つに対し、イコールは4つ、未知の変数の数と式の数があっているので連立方程式としては解けそうである。

これをがちゃがちゃして解いていくと
x1=(x3(R2-R1)+x2(R1-R3))/(R2-R3)

近似すると
x1=x2-(R2-R1)x3/R3

となる。
このx1の式に既知の変数
月の直径:x2=3474.8km
太陽の直径:x3=1391000km
地球の半径:R1=6378.1km
地球-月間距離:R2=384400km
地球-太陽間距離:R3=149597870km

を代入すると、影の大きさx1=-40kmと出てしまう。

影の大きさはマイナスになりえるのか?
マイナスの影の大きさとはどんな意味か?

ここで下の2つの図を見てほしい。
01c4c483.JPG










僕は当初、焦点が地球の内部に位置するとして計算していた。
だから影の大きさはプラスである。

しかし、太陽がより近く、焦点が地球と月の間に来た状態でも影はでき、日食は起こりうる。
影の大きさがマイナスというのはこういうことを意味していたのだ。


実は、このような状態で見れる日食は金環日食というらしい。
僕は皆既日食の影の大きさを計算しようとして、図らずも金環日食の影の大きさを計算することになってしまったらしい。


これでは皆既日食の影の大きさを計算できない。
何がいけなかったのか。
地球が楕円軌道であることを考慮していなかったのだ。
太陽と地球との距離を平均値で与えてしまっていた。
これを天文単位と呼んでいるらしいのだが、
地球が太陽からもっとも遠くなる距離は1.017天文単位
もっとも近くなる距離は0.983天文単位

実にたったの1.7%しか違わないのである。
それを考慮して再計算してみると

太陽から近いときは101kmの影の金環日食
太陽から遠いときはわずか19kmの影の皆既日食として算出できることがわかった。
(実際は皆既日食も金環日食も見れる範囲はもう少し大きいらしいく、それぞれ260kmと390kmくらいらしい。地軸の傾きを考慮に入れるとそのくらいになるのだろうか)


太陽と月の見かけの大きさがほぼ同じなのはすごい偶然だと認識していたが、
見かけの大きさが太陽のほうが大きくなったり小さくなったりするほど絶妙な関係だったとは思いもしなかった。

あと少し地球が太陽より遠ければ金環日食しか見れなかったわけだし
逆であれば皆既日食しか見れなかったわけである。

月の大きさ、太陽の大きさが少しでも違っていてもそうなるだけでなく、日食が見れること自体が奇跡的な偶然であることも考慮に入れなければならない。





月がこのような大きさと距離であったことは定説では「巨大天体の衝突」による偶然的なものであり、それでいて潮の未知引きや地球の地軸の安定化など、生命にはとても大事な要因であった。

また太陽がこのような大きさと距離であったことも定説では太陽系誕生時のガスの量しだいで非常に偶然的なものであり、それでいて水という「液体が固体より重い」奇妙な物質が液体でも気体でも固体でも存在できたことなどに影響し、生命にはとても大事な要因であった。


生命が存在できたことと日食が皆既・金環どちらも見れるということは一見なんのつながりもないように見える。

したがって地球外生命体が人類のほかにいたとすると、その環境に日食やそれに類似した、あるいはまったく別の何らかの絶妙なバランスによるイベントめいたものが発見できる確率は・・・地球人中心のデータからはなんともいえないが、きわめて低いんじゃないかと思えてくる。


だとすると、この宇宙のこの環境で人類が生まれたことは本当に偶然だったのかと問いたくなるのも必然であり、もし必然だったとすると地球外生命体は同じような偶然的イベントを体験しているべきか、あるいはそんなやつらはまったくいないか、のどちらかだと思いたくなるものではないのか。



まさに、人間中心から人間端っこの宇宙観というコペルニクス的転回を
もう1度戻すというコペルニクス的逆回転が起こりうるのではないか
という気さえしてくるから恐ろしい、いやワクワクするではないか。



にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

今日はよく晴れていてね
飛行機の轟音が遠くに聞こえて
そんな日は昼寝だっつって夜まで昼寝したんだけどさ

まあ飛行機じゃなくて除雪車だったんだけどね


 
寝ている間にふとね
エレベータの中にトイレがあったらどうだろう?みたいな空想がね
いやむしろ
トイレがエレベータの中にあったらどうだろう?

違い分かる?
文字数一緒だけど

エレベータの中の一部がトイレなんじゃなくて
トイレがエレベータの全部を占めていて
エレベータ内部のアイデンティティがトイレなの

だからさーつまり

エレベータの中で何する?
って聞かれたら普通は「は?何ってそりゃ待つだけでしょ」
な現世の人たちに対して、あっちの世界の住民は
エレベータの中で何する?
って聞かれて「は?何ってそりゃ用を足すに決まってるでしょ
になるわけよ。


でも起きて考えてみると、何のためにエレベータの中身をトイレにするのかって言われるとなんだっけってなるわけでね

3階くらいの建物なら、トイレの個数をケチってみました
ですむんだろうけど

1000階2000階と宇宙に続くタワーのエレベータでそれやっちゃみんなおしっこうんち漏れちゃうだろみたいな

だがにょっと待ってほしい
排泄の反対はたぶん食事だと思うんだけど
宇宙まで続く長いエレベータの旅の途中を食堂車でお楽しみくださいってのは横を縦にしただけだから可能なんだよ

なんで食事を排泄にするだけでNGになるのかっていうと
我慢できないからだよな
なんで我慢できないのか
なんで1日3回朝昼晩と決まってないのか
臨機オーフェンにすぐ出す必要があるのだろうか

と思っていたときに、ふと思い出したわけよ
ツメやヒゲが伸びたら勝手に1mmずつ細切れになって自動的にゴミ箱に行けばいいなと
あれよ、いるよな確か・・・サメ
生え変わるらしいじゃん、歯が。
それみたいに、1mmとかの最小単位のツメやヒゲが小分けに体内からにゅっと出てきてて
1mmの長さになったら自動的に生え変わる。
そういうのだったらいいなって思ったわけよ
ツメは僕の場合だいたい10日前後で切りたくなるんだけど
それが±1日くらい変動する分にはかまわないわけよ

ツメやヒゲだって体調によってベンピしたりゲリしたりするだろうしさ
そう。だからおしっこやうんちも100ccとか100gのサイコロとかごとにで出てくりゃいいわけよたぶん
難しいのかなぁ

それができれば宇宙までの長旅の疲れを便所車両で癒してください
なんてことも可能だと思うんだけど



そういえばいつだったかな
メモはしたかどうか覚えてないんだけど
夢で
エスカレータの中に風呂があるっていうのがあったな
これもさ、宇宙まで続くエスカレータの中に風呂だったらさ
宇宙までのエスカレータの長旅をお風呂で癒してみてはいかがですか
みたいなことはそんなに難しくないと思うんだよねぇ





とにかくよ、宇宙云々はいいとしても
2階建てとかの家で、トイレとエレベータを合体させる発想は
ケータイにカメラを合体させる発想と同レベルの奇抜さとぱっと見間抜けさを含んでいると思うんだよね。

高齢化が進む日本の住宅のエレベータのスペースをトイレに求め、
トイレは2つだったのを1つにケチれる
できればトイレエレベータの四方ないし2方向をドアにして、どちらも開くようにする
なかなか実用的に萌えてこないか?




にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

ウィークボソンは最後の真空の相転移が起きる前、ヒッグス機構が働かず質量がゼロだったので、同じく質量がゼロのフォトンと区別がつかなかった。
これがワインバーグとサラムによる電磁相互作用と弱い相互作用の統一理論である。


だがちょっと待ってほしい
ウィークボソンは3種類ある
電荷0のもあるし、+のも-のもある。
電荷0のものはいいとして、電荷を持つウィークボソンが質量だけゼロになったところで電荷は持っているのだからフォトンとは区別がついてしまうではないか。



またこの手の話のマイブームがちょっとだけ再燃してきた気がする
よーし、今日の日記はこれにしよう。


しかしながら、質量がゼロということは常に光速で移動する粒子であることと同じである。
質量がゼロで電荷を有する粒子が光速で移動すると常に光の衝撃波を出し続けてエネルギーを失いながら移動しなくてはならない。
同様に、色荷や弱荷を持っている質量ゼロの素粒子も色荷や弱荷を量子場とする力場を放出し続け、エネルギーを失うに違いない。



という観点で質量ゼロの素粒子を見渡してみると、見事にみんな電荷や色荷や弱荷を持っていない。

例外であるグルーオンは、質量0で色荷を持つとされるが、どうやら単体では色荷を持っているが、8種類すべてが自身の反粒子との重ね合わせになっているため、実質的には色荷を持っていないものとできるのだろう。

しかし、ヒッグス機構が働いていなかった間の真空中ではクォークもレプトンも質量がゼロだったわけで、
クォークもレプトンも少なくとも電荷を持つので
光速で移動しながら電磁波を出し続けてエネルギーを失い続けていたのだろうか?


もしくは、質量がゼロだったころには電荷その他の荷もゼロだったのだろうか?


という感じのことを、電荷を持つウィークボソンをきっかけに考えてみたという話だ。
フォトンと区別がつかなかったということは真空の相転移前は3種類のウィークボソンどれも電荷もなかったのかもしれない

だとすると、ヒッグス機構が働いていない間は質量だけでなくそのほかのあらゆる荷も働いていなかったのではないだろうか。




そういえば重力だけはいろんな意味で例外的であった。
ほかの相互作用に比べると驚異的に小さく、素粒子に対しては無視できる強さだが、なくはない。
むしろすべての粒子に相互作用する。
質量ゼロの粒子にもだ。まさに万有引力である。

ということは、質量ゼロのあらゆる粒子は光速で重力波の衝撃波を撒き散らしながら飛んでいることになるのだろうか?
これは「重力はくりこみできない」ことと関係があるのだろうか?








これらの話は、質量ゼロで光速で飛ぶ粒子の傾向を考え、さらにその先の「超光速で飛ぶ粒子」の荷の持ち具合を類推するために重要な話だと僕は考えている。

もちろん僕は超光速粒子肯定派である。


にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

やぁ、僕はレタービー!郵便屋さんだよ!

これからある集合住宅のシーイングヌイオ君のところに僕自身を届けに行ったついでに遊んでくるよ!

その集合住宅は西京都府県素粒市(さいきょーとふけんそりゅーし)の北3条西2丁目にある(-2,3)ビルのことなんだけど、素粒市駅が南北大通と東西デカルートの交点にあるから、そこから北に道3本分、西に道2本分行けば(-2,3)ビルにたどり着けるよね!


-2,3ビルの玄関につきました。
ヌイオくんの家は2階の半径5分の3、偏角真西から反時計回りに5区画目にあるんだってさ。
素粒市のビルってちょっとやっかいなんだよねー

何はともあれまず10階に上るんだよ。
ビルの中央にエレベータがあってね、これがまた怖くてねー。人力バンジージャンプ型で「超8階(ちょーはっかい)」って名前なんだ。
まず自分の体が浮き上がらないように固定する。
それから長いサオで、10階から垂れ下がってるゴムロープを引っ張ってくる。
そして体の固定具をはずすと一気に10階まで飛び上がるわけ。
10階についたらゴムロープを体から取り外して、次の人のために下まで垂らしてやるのがマナー。破ると死刑ね。

素粒市のビルはみんな円柱の形をしていてね、全部10階建てなんだ。9階と10階は移動用のスペースだから、居住区画は全部で8階、だからエレベータの名前は超8階。


10階にはビル中央から西に伸びる滑り台と戻ってくる滑り台の2本が用意されていてね、これを「左5条(さごじょー)」って呼んでるらしい。
ヌイオくんの半径は5分の3だから、3区画だけ西に行けばいいよ。
滑り台に乗る前にレバーを3にあわせると、中央から3区画だけ進んだ段階で自動的に9階に落ちるようになってる。
ちょーはっかいのときよりは落差は少ないけど、フロア1つ分下に落ちるわけだからね、それでも怖いよね。
このビルは内側から外側までが5層になっててね、その何層目に行きたいかを決めるのがさごじょーってわけ。北を上に見た地図で西に5区画伸びた滑り台だから、左5条。
行き先を設定し忘れたらビルの一番外側に行っちゃうから、そうしたら戻りの滑り台を使って戻ってやり直せばいいよ。


9階に下りました。
ここからは螺旋形の滑り台で真西から反時計回りに滑っていくよ。
この滑り台の名前は「33方4(さんぞーほーし)」1周ぐるっと360度を36度ごとに区切ってるから、3×3×4=36でさんぞーほーし。
5区画目だから、真西から36度×5=180で真東にあるってことだね。
この滑り台でも行き先の5区画にレバーをあわせてから滑り始める。
ただし!レバーはもう1つあって、最終的に2階に行きたいんだから、もう1つのレバーを2階にあわせなきゃだめだよ!
ここでも行き先角度レバーを設定し忘れたら1周しちゃうからまた回りなおせばいいけど、行き先の階のレバーを設定し忘れたら振り出しに戻っちゃうから気をつけてね!

8階から2階まで落ちるのは今でも恐怖満載なんだよねぇ。


ヌイオくんの部屋につきました。
僕はヌイオくんに直にあって話がしたかっただけなので
用が済んだら帰ります。
それにしても相変わらず透き通ったビルだねー。
壁の透明度が日本一なのです。
まあそうでもしなきゃ内側の家の人がまっくらでしょうがないんだけどねー。

帰り道は、ヌイオくんの家に設置してあるポイ捨てちょーはっかいで地下まで落ちるだけ。
地下にはすり鉢があるからそれを滑り降りれば自動的に中央にたどり着くのでそこから1階に上がればビルを出れるよ!



でも何か忘れているような・・・あ
今日は359(さんごくー)の日だった!!
ヌイオくんはそれで僕を呼んだのか!うっちゃりしてたよ!
素粒市のカレンダーは特殊で、1週間を6日として1ヶ月を6×5週間の30日とし、1年を30日×12ヶ月の360日と余分な5日あるいは6日をお祭りの週さんごくーとして取っておいてあるんだ。

もう1回上らなきゃ・・・。



ちょーはっかいさごじょーさんぞーほーしさんごくーの4人をさいゆーきと、素粒市では呼んでいるんだけどね、その理由は、さいゆーき4人を使うと時間と空間の1ポイントが正確に決められるからなんだ。
年末のお祭りの週であるさんごくーは、さいゆーき4人を擬人化してお疲れ様をいうためのお祭りなんだよ。

さいゆーきのうち、さんごくーを抜かした3人のことを円柱座標って言うからみんなも覚えておいてね。



にほんブログ村 漫画ブログ SF・ファンタジー漫画へ
にほんブログ村

拍手[6回]

eπ>πeであることを証明する。

今日はなんとなく逆説的に進めて行きたい気分なので

eπ<πeが正しくないことを証明する。
両辺の対数を取る。
π<eln(π)
両辺をeで割る
π/e<ln(π) ①

ln(π)をe付近でテイラー展開する。
どうしてこのようにしたらいいかという推測は
整数のみの四則演算であるテイラー展開にπとeを組み込みたいからと考えればよい。

xの関数f(x)におけるテイラー展開の定義は
f(x)=∑(an(x-x0)n/n!) (n:0~∞)
an=f(n)(x0)

であるので、f(x)=ln(x)、x0=eとしてテイラー展開する。

ln(e)=1
ln(k)=(-1)k+1(k-1)!/ek  k:1以降の整数
なので、
an
a0=1
an=(-1)n+1(n-1)!/en n:1以降 
となり、ln(x-e)のテイラー展開は
ln(x-e)=1+∑((-1)n+1(x/e-1)n/n)
となるので、x=πを代入すると
ln(π-e)=1+∑((-1)n+1(π/e-1)n/n) (n:1~∞)
となることがわかる。

n=1の項まで見ると、
ln(π-e)≒π/eであり、①式は等号で結ばれることになるが、
n=2の項が-(π/e-1)2/2なので、n=2での近似はn=1の近似のときのπ/eよりも小さくなることがわかる。
また、それ以降の項の絶対値はどんどん小さくなって収束していくので、一度(π/e-1)2/2だけ引かれた値がさらに(π/e-1)2/2以上加わることはない。

したがって①式
π/e<ln(π) 
は誤りである。

よって
eπ>πe
である。

第一話、完。


にほんブログ村 科学ブログ 自然科学へ

にほんブログ村

拍手[4回]

よく、植物の成長とか天気の移り変わりとかで、「時間を縮めて見てみましょう」ってのがあるよね
そのときの映像にその場の音声が入ってたことってないよね
音声はあくまでほかで録ったものを混ぜてるとか、ナレーションとBGMとか。

ただ、いまどきの時短再生映像の場合は倍速の倍率が2倍程度とかそんなに大きくないから、音声が聞き取れる範囲で圧縮することは可能なんだけど

24時間を3分に時短するとなるともう音声が入る余地なんてないよね

そこで思ったんだけど、映像も音声もどちらも信号なのに、どうして映像は時短で見れても、音声は時短で聞きづらいんだろう、と。

そもそも、映像と音声は信号への変換の仕方が全然違うわけね
まず音声は、1つの信号の中に音の大きさも高さも音色もリズムも全部入ってる
でも、映像は信号が赤・青・緑の3本あって、1つ1つの信号には光の強弱やリズムの情報しか入ってない
だから時短しても映像として違和感ないわけ。


これが、光の波としての信号が全部入れられるような超高性能な媒体に映像情報が入っていたら、2倍に時短した時点で音声が1オクターブ高くなるのと同様に、元々青系統だったものは黒くなって、赤系統だったものが青くなっちゃうだろうね
光の周波数で言うと、赤の約1オクターブ上が青だからね。その中に見える範囲の色が全部入ってる。



もし、ものすごい低周波からものすごい高周波までの光も音も記録できる超すげー記録媒体があったら・・・どんなものが記録できるんだろうか
それだけで痛覚なんかも記録できそうだよね
あ、でもにおいや味覚は無理か
数ミリヘルツから数千テラヘルツまでってすごいものになりそうだなー
ビットレートは100万テラbpsくらいだろうか・・・orz
1秒間で10万テラバイトくらい食うのかよ・・・しかもそれで3次元空間のたった1ドットしか表せないのか・・・orz
おそろしく無駄な媒体だな

今度・・・可能だったら宇宙を1個完全に現すのに何ビットくらい必要なのか考えてみよう
そろそろできるんでないかな



にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

あんまりプログラムのことは詳しくないので大きなことは言えないんだけど、プログラムが自律的に進化するって言っても「設計された許容内」での進化なんじゃないかなとは思っているわけで。

その許容する可能性の状態をとても多くすることで擬似的に「自律的に進化している」と見せかけてるんじゃねーかなーとは思っているわけで・・・。
(ほかにいい方法があったらごめんよ)

たとえば、ユーザーの癖を学習する漢字変換システムは、たぶんだけど何もない状態から学習してるんじゃなくて、ある最低限のルール、たとえば日本語が持つ最低限のルールや日本人の取りうる癖をすべて許容する「枠」のようなものを用意されて、はじめて機能するんだと僕は思ってる。
だからつまり、道のないところに道を作る能力はなく、いくつか用意されたレールを分岐点に沿って選んでいるに過ぎないんじゃないかなと。

だとしたらそのプログラムの持つ進化というものは有限のときがきたらそれ以上進化しない限界になってしまう。


おそらく、それはプログラムだけではない。
生命においても「基本的には」最初に定められた膨大ではあるけれども有限の選択肢を選んでいるには過ぎないんじゃなかろうか。
(※ただし、放射線による突然変異などを除く?)

海から陸に上がりエラを捨てて肺呼吸になった生物が後々の子孫において、また海に戻る際に肺呼吸を捨てて新しい呼吸法を得ることができなかったのはそういう意味合いがあるのではないか。

そういう観点で生命と知性の違いを見てみると
知性は、新しい枠組みを作る役割を持って、生命における限られたプログラムを破壊し、作り直すために生まれてきたのではないかとも思える。
だからこそ知性の進化スピードは生命の進化スピードに比べ格段に速いのではないか。

しかし、知性の持つ選択肢も例外なく有限であるのだろう。次に誕生するべく何らかの枠組みによって破壊されるものなのかもしれない。

そうやって、新旧の枠が共存する時代に新しい枠が古い枠を壊しながら、プログラムの持つ制限を劇的に押し広げる殻破りを幾重にも行って、進化を続けていくべきなのかもしれない。


にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

書いたのは18日

宇宙の「暗黒物質」検出? 本当ならノーベル賞級の発見
クリスマス当日にXmassで本物のダークマター検出して追い越したれ!
まだまだ挽回のチャンスあるで!(駄洒落的に)
この2件が偽者でありますよーに(駄洒落的に)



にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]

64は4の3乗でありながら、8の2乗でもある
このように、何かの3乗でありながら何かの2乗である数であるためには
どのような条件が必要かというと
その数が何かの2×3=6乗であればいい。

64は2の6乗である
同様に、3の6乗である729は、27の2乗でありながら9の3乗でもある
このようにして探していけばいい。
つまり、2の6乗である64と3の6乗である729の間には、何かの2乗でありながら何かの3乗である数字はないということになる。
(「何か」は整数である)



にほんブログ村 科学ブログ 自然科学へ
にほんブログ村

拍手[4回]



忍者ブログ [PR]
カレンダー
01 2025/02 03
S M T W T F S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28
ブログランキング
ブログランキング参戦中
にほんブログ村 アニメブログ 深夜アニメへ
にほんブログ村 漫画ブログ SF・ファンタジー漫画へ
にほんブログ村 科学ブログ 自然科学へ
よかったらポチッとお願いします^^
最新CM
[12/30 buy steroids credit card]
[09/26 Rositawok]
[03/24 hydraTep]
[03/18 Thomaniveigo]
[03/17 Robertaverm]
最新TB
プロフィール
HN:
量子きのこ
年齢:
43
性別:
男性
誕生日:
1981/04/04
職業:
WinDOS.N臣T
趣味:
妄想・計算・測定・アニメ
自己紹介:
日記タイトルの頭についてるアルファベットは日記の番号です
26進数を右から読みます
例:H→7番目、XP→15(P)×26+23(X)=413番目。
A=0とする仕様につき一番右の桁はAにできませんのでご了承くださいズコー
バーコード
ブログ内検索
アクセス解析