| 
							20080511~
13と7と11の倍数の論理積は13と7と11の積の倍数である。
和ァ・・・						 × [PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。 
								前回の続きなんですが、実際にSU(4)の生成子の中の3つの実数と6対の共役複素数から、固有値を求めるための4次の特性方程式を実装し、生成子のエルミート性から4次方程式の解が4つとも実数であることを確かめたのが以下の図です。 対角成分の実数をx,y,zとし、それ以外の共役複素数をa,b,c,d,f,gとして a,b,c,d,f,の実部をa1,b1,c1,d1,f1,g1、虚部をa2,b2,c2,d2,f2,g2とそれぞれ定義し、 15個のパラメータを-0.5~+0.5の範囲で一様乱数として、左から2列目に出現させてみました。 左から3列目は左から2列目の2乗で、一番下に15個の2乗和のルートを算出しています。 15個のランダムの値それぞれをこの2乗和のルートで割ったのを、規格化後として左から4列目に配置しました。特性方程式にはこの4列目のデータを用います。 念のため5列目には4列目の2乗を算出して一番下で和のルートを取り、1になることを確かめています。 そうすると特性多項式のグラフは右のようになり、 x軸と交わる点つまり4次方程式の解は必ず4つあることがわかるかと思います 4次方程式の解はフェラーリの方法で算出しました。 PR     | 
							カレンダー						 
 
 
							カテゴリー						 
							最新CM						 [08/08 さつ香]
 [12/30 buy steroids credit card]
 [09/26 Rositawok]
 [03/24 hydraTep]
 [03/18 Thomaniveigo]
 
							最新記事						 (01/01) (03/19) (03/18) (03/18) (02/23) (02/14) (02/12) (01/03) (09/23) (09/23) (02/11) (05/30) (05/28) (05/28) (05/27) 
							最新TB						 
							プロフィール						 
HN:
	 量子きのこ 
年齢:
	 44 
HP:
	
 
性別:
	 男性 
誕生日:
	 
		1981/04/04	 
職業:
	 WinDOS.N臣T 
趣味:
	 妄想・計算・測定・アニメ 
自己紹介:
	 日記タイトルの頭についてるアルファベットは日記の番号です
 26進数を右から読みます 例:H→7番目、XP→15(P)×26+23(X)=413番目。 A=0とする仕様につき一番右の桁はAにできませんのでご了承くださいズコー 
							ブログ内検索						 
							アーカイブ						 
							最古記事						 (05/11) (05/11) (05/13) (05/13) (05/13) (05/13) (05/13) (05/13) (05/14) (05/14) (05/14) (05/14) (05/16) (05/16) (05/16) 
							アクセス解析						 | 
 
	 
							 
								 
						



