20080511~
13と7と11の倍数の論理積は13と7と11の積の倍数である。
和ァ・・・
先日は「Excelの2Dグラフで面が塗れない」と言ったな!あれはちょっと嘘だ!! できないこともないが面倒くさい! そういえばワーキング先生のサーヴァントなんちゃらが放送中らしいじゃないですか! もうひとつ、何かチェックしようとしたアニメがあった気がしたんですが忘れたので 明日もし肩こりが治って思い出せたらこのブログを思い出して思い出すべきことを思い出してほしい と未来の自分に期待。「会うのは二度目だったな、1日後の俺。」 いわゆる対称性チラリズム 途中でいくらでも気持ち悪い複雑な形が出てくる いわゆらないかー! にほんブログ村 ワーキングのアレはANDじゃねえよなぁXORだよなあ K=-(I*(-J)+J*(-I))==(I+(-J))*(J+(-I)) ド・モなんとかの定理にありがちな文字と記号の分野ごとのインフレ つくりかた ======= -2~2くらいまでの一様乱数をx、yの2列、100セットくらい作ります 1つ目の四角(x:-1~1、y:-1~1)に収まるかどうかの判定を作ります。(条件1) -1<=x<=1、-1<=y<=1という4つの条件をandしてもよいですが、今回はx^4+y^4<=1の条件で近似しました。 1つ目の四角をxもyもプラス2します。 平行移動させた四角を時刻に応じて回転させます。0~180°の範囲で、180°に漸近するように回します。 回転させたxとyをさらにx、yともにプラス1平行移動させます。 以上の、平行移動(+2)→回転→平行移動(+1)の操作を行った”元の”図形がx、y:-1~1に収まるような判定を作ります(条件2) 「操作する”前の”図形がx、y:-1~1」の条件なので、枠(赤いほう)自体は逆の順番 つまり平行移動(+1)→逆回転→平行移動(+2)の順番で変換します。 -2~2くらいのxとyのランダム点のうち、条件1と条件2のandとかxorを取っものだけがyとして描画されるようにします。 条件から外れたらyを100まで飛ばします このxとyをグラフ化します。 PR |
カレンダー
カテゴリー
最新CM
[12/30 buy steroids credit card]
[09/26 Rositawok]
[03/24 hydraTep]
[03/18 Thomaniveigo]
[03/17 Robertaverm]
最新記事
(01/01)
(09/23)
(09/23)
(02/11)
(05/30)
(05/28)
(05/28)
(05/27)
(08/04)
(10/24)
(06/08)
(05/22)
(01/13)
(11/04)
(11/02)
最新TB
プロフィール
HN:
量子きのこ
年齢:
43
HP:
性別:
男性
誕生日:
1981/04/04
職業:
WinDOS.N臣T
趣味:
妄想・計算・測定・アニメ
自己紹介:
日記タイトルの頭についてるアルファベットは日記の番号です
26進数を右から読みます 例:H→7番目、XP→15(P)×26+23(X)=413番目。 A=0とする仕様につき一番右の桁はAにできませんのでご了承くださいズコー
ブログ内検索
アーカイブ
最古記事
(05/11)
(05/11)
(05/13)
(05/13)
(05/13)
(05/13)
(05/13)
(05/13)
(05/14)
(05/14)
(05/14)
(05/14)
(05/16)
(05/16)
(05/16)
アクセス解析
|