20080511~
13と7と11の倍数の論理積は13と7と11の積の倍数である。
和ァ・・・
昨日・・・じゃなくて今日、の続きです。
この行列Aを、ユニタリ行列Pとそのエルミート共役P†で対角化しましょう。 対角化されたあとの行列をJとおくと J=P†APとなるわけですが せっかくなので、Pをモジュール化してみます。 こうおいてみますと、対角化行列Jは このように表されますね。 最後の計算は長いので、要素ごとに分けて表示しますと 2行目が全部ゼロなのはいいとして、非対角成分は このように 対角成分は このようになりますね。 非対角成分は、計算するとすぐにゼロだということが分かると思いますので、計算してみてください。 残るは、対角成分2つです。 整理すると、J11=-J33と、ただ符号だけが逆なのだとわかるので、J11だけ計算します。 一般に、2つの複素数vとwの、複素共役を交えた交換関係のような式は、虚部をi2倍した であることがわかるかと思いますのでJ11は こういうことが言えます。 ここでようやく、v1、v2、v3やその複素共役の中身を思い出すわけですが なので、虚部はc/2ですね 同様に 実部と違って虚部は一見なんのことかよくわからないように見えますが a^2+b^2+c^2=1の規格化条件を思い出してみると a^2+c^2=1-b^2であることがわかり、実部同様、虚部も約分できて b/2であることがわかるでしょう。 さらに となって、虚部がa/2であることがわかります。 よって、J11=2(c*c/2+b*b/2+a*a/2)=(a^2+b^2+c^2)=1 であることがわかり、J33はその逆符号である-1であることがわかります。 つまり、 と、めでたく固有値±1と0で対角化できたというわけです。 PR |
カレンダー
カテゴリー
最新CM
[12/30 buy steroids credit card]
[09/26 Rositawok]
[03/24 hydraTep]
[03/18 Thomaniveigo]
[03/17 Robertaverm]
最新記事
(01/01)
(09/23)
(09/23)
(02/11)
(05/30)
(05/28)
(05/28)
(05/27)
(08/04)
(10/24)
(06/08)
(05/22)
(01/13)
(11/04)
(11/02)
最新TB
プロフィール
HN:
量子きのこ
年齢:
43
HP:
性別:
男性
誕生日:
1981/04/04
職業:
WinDOS.N臣T
趣味:
妄想・計算・測定・アニメ
自己紹介:
日記タイトルの頭についてるアルファベットは日記の番号です
26進数を右から読みます 例:H→7番目、XP→15(P)×26+23(X)=413番目。 A=0とする仕様につき一番右の桁はAにできませんのでご了承くださいズコー
ブログ内検索
アーカイブ
最古記事
(05/11)
(05/11)
(05/13)
(05/13)
(05/13)
(05/13)
(05/13)
(05/13)
(05/14)
(05/14)
(05/14)
(05/14)
(05/16)
(05/16)
(05/16)
アクセス解析
|